上海百速信息技术有限公司 已通过实名认证

反射内存卡,PCI5565PIORC,光纤反射内存,GE反射内存

普通会员
企业工商信息
以下内容来自第三方 启信宝 提供
企业工商信息
以下内容来自第三方 启信宝 提供

暂未查询到工商信息

×

企业特殊行业经营资质信息公示

上海百速信息技术有限公司

普通会员

  • 企业类型:

    企业单位

  • 经营模式:

    制造商,贸易商

  • 荣誉认证:

        

  • 注册年份:

    2007

  • 主     营:

    反射内存卡,PCI5565PIORC,光纤反射内存,GE反射内存

  • 地     址:

    宜山路515号2幢26A

更多新闻分类
  • 暂无分类
站内搜索
 
更多友情链接
  • 暂无链接
您当前的位置:首页 » 新闻中心 » 同步辐射装置中反射内存卡应用
新闻中心
同步辐射装置中反射内存卡应用
发布时间:2019-07-08        浏览次数:41        返回列表

半实物仿真的一个新趋势是从单武器平台仿真向多武器平台仿真方向发展,为了将不同功能、不同地点的仿真试验设施进行联网,组成分布式一体化的综合仿真试验室 (DIS),仿真技术开始向仿真的高层体系结构(HLA)发展。HLA是促进所有类型仿真之间互操作、仿真模型组件重用的**协议。

我国军用仿真技术的发展已有四十年的历史。建成了射频、红外仿真系统服务于各类新型导弹,20世纪90年代我国开始对分布交互仿真、虚拟现实等**仿真技术及其应用进行研究,由单个武器平台的性能仿真发展为多武器平台在作战环境下的对抗仿真。我国国防科技大学研制的YHF4仿真计算机 ,达到了****水平,但总的技术水平,特别是应用水平与发达**相比还有差距。本文就建立一种适用于主动寻的末制导雷达多种型号、多种信号接口形式的半实物仿真系统进行了研究。概述了仿真系统的组成及功能,解决了数据**传输等关键技术问题;并对系统性能进行了测试,实现了基于单发导弹、单个目标多种干扰及组合方式的导弹攻击过程的可视化作战仿真。

1  仿真暗室设备组成及功能

 

1.1  系统简介

适用于多种型号制导武器的半实物仿真微波暗室,由实时和以太双网络组成,将连接到网络中的每台计算机作为一个节点,以实现导弹空中姿态、目标环境特性模拟,全弹道数学模型解算等功能。就系统设计而言,导弹弹体、稳定控制系统、舵机和捷联惯导组件等导弹控制系统模块以仿真模型方式参与仿真制导回路试验。在试验过程中,需要实时解算弹道仿真模型的工作状态,并管理和控制回路中其它仿真节点协调有序工作。考虑其通用性和可扩展性,系统采用高性能通用计算机,配置多样化的数据**手段。

各仿真模块接口与导弹实体相对应,使其适应多个型号的仿真试验。全弹道半实物仿真微波暗室设备组成如图1所示。

1.2  主要设备及功能

制导武器半实物仿真暗室主要设备包括高性能通

 

用计算机,SGI图形工作站,仿真接口控制柜等相关仿真设备。其中,实时网作用是为仿真试验提供各设备间的高速通信链路,以满足节点之间的实时数据交互要求。而全弹道数学仿真模型的准确性,战场态势设置的合理性,则需要在应用前加以验证。以太网就是出于这种目的而设立,同时也被用于试验准备阶段的软件开发,实现各节点控制计算机之间的信息交互和资源共享。出于对被试品实时性的考虑,半实物仿真实时网络采用基于VMIC-5565实时网卡的星型拓扑结构,通过冗余光纤Hub(VMIACC-5595)与各仿真设备相连。与环型结构相比,星型拓扑结构消除了单点失效、实现了故障隔离,通过对节点优先级的设置使其具有更小的延时[2]。

1)仿真主控计算机:是整个系统的管理和控制核心,具有仿真资源配置、仿真试验前的态势下发、全弹道仿真模型校验、情报参数装订,仿真进程控制功能,同时完成实时网闭环前自检、系统授时,对仿真节点的工作状态进行监控;

2)三轴飞行转台:作用是把弹道解算计算机解算出的导弹姿态运动量,转换为三个方向的角位置和角速度,从而形成逼真的模拟飞行器姿态变化;

3)目标环境生成系统:由射频信号源分系统,阵列及馈电分系统组成。主要功能是在微波暗室内,模拟导弹攻击目标过程中导弹末制导雷达所遭遇到的电磁信号环境,生成有源和无源干扰信号、雷达目标回波模拟信号、目标视线角位置及运动轨迹;

4)弹道解算计算机:实时解算制导武器运动学、动力学和控制系统模型,生成弹目相对距离、弹体姿态以及导弹位置等其它仿真设备的控制指令,协调有序的完成全系统半实物仿真。它既能用数学模型对制导武器系统进行数字仿真,又能和接入仿真回路的实物一起构成半实物仿真系统;

5)视景仿真计算机:在接近实战的环境下,以导弹姿态、位置及弹目相对位置等信息为参数,将导弹攻击目标的过程以三维动画方式直观显示,形象、直观的形式实时显示飞行器半实物仿真的全仿真过程。

6)数据**传输系统:主要完成远端被试导引头的数据**和测试操作,同时将**到的制导信息,通过反射内存传送给弹道解算计算机;并回传控制指令实时控制导引头工作状态。

7)数据库服务器:对系统所需要的情报资源和仿真资源信息等进行管理,并在仿真试验过程中对数据进行实时记录和存储;

1.3  仿真软件及功能

操作系统:Windows2000 + 实时软件包 ;系统总体开发平台:Visual C++ 6.0;仿真建模软件:YHSIM;三维视景软件: Multigen Creator 3.0和**可视化仿真软件包完成Vega Prime 2.0;数据库开发工具:SQL Sever 2005。

由于HILS的各仿真节点运行不同的仿真软件用以实现不同的功能,为确保各节点之间数据通讯和仿真同步,仿真软件总体上汲取windows操作系统消息、事件驱动的程序设计方法,采用客户/服务器运行机制,服务器程序通过VMIC网络向各仿真节点发送仿真驱动消息,并对各节点状态消息查询,驱动各客户机节点控制软件运行。仿真软件从顶层设计角度出发,将各节点的仿真软件分为三大类:主控机软件、同步机软件和非同步机软件。在导弹闭环仿真试验中,弹道解算计算机、目标环境生成系统、三轴飞行转台控制系统、数据传输系统执行同步机软件运行机制[3]。

基于反射内存API动态链接库技术是独立于应用程序的分布式仿真系统应用程序接口。它是基于VMIC-5565内存通信协议的即时通信服务,与各仿真节点程序并行开发,自行调试,各节点应用程序以API的动态链接库形式调用,程序之间无须进行通信调试。数据转发依据查询状态位或发硬中断方式实现,各节点仿真主程序不参与各类信息的网络间传输。必须注意的是,对于每个节点上的反射内存,其地址是本地主机内存的一部分;通过内存映射机制,用户对本地节点内存的读写相当于对网间各节点相同地址内存进行读写,从而实现了分布节点间的数据通信[4]。

因此,在控制关系明确的基础上,弹道解算计算机与各节点之间的通信协议,包括传输参数、数据格式、VMIC内存地址分配等;都应采用相同的数据类型和数据结构,否则将引发内存地址冲突,以致仿真试验失败。制导武器半实物仿真微波暗室通过应用“YH-Astar”仿真工作站以及运行其上的YHSIM实时仿真软件,采用实时的Runge-Kutta积分算法和基于VMIC-5565反射内存的实时网络,**确保了半实物仿真的实时性[5]。

2  半实物仿真系统关键技术

 

2.1  实时数据**传输系统

 

2.1.1  系统总体设计及硬件配置

数据**和传输系统是为减轻弹道解算计算机解算负载以保证实时性的前提下设计的。其主要功能是在末制导雷达闭环仿真试验模式中,实时**末制导雷达输出的相关制导与指令信息,并通过VMIC实时网实时传送到弹道解算计算机参与全弹道解算;同时,向被试末制导雷达发送控制指令,实时控制末制导雷达的工作状态。其组成如图2所示。

为适应数字雷达导引头的仿真试验的需求,**系统在原有的基础上增加了串行数字量**通道,该通道接口形式包括有:RS232、RS422、RS485;其与TTL电平相互转换由信号调理模块实现,离散量的**、量化、编码采用的是包括基于PCI总线的时统部件I/O控制卡。

串行数字量**通道硬件部分主要由上、下位机构成,上位机为高性能工控机。以DMA查询的方式与下位机进行通信,接收下位机的数据,并对数据进行分析和处理,实时地显示控制变量的状态。同时根据弹道解算控制信息,向下位机发送指令。由单片机和A/D芯片组成的下位机将传感器**到的离散信号进行DCB编码,同时根据上位机发出的控制指令控制导引头执行相应的操作;上位机通过数字I/O控制板卡可扩展出m≤ 8个串口。采用VC++6.0环境下调用Windows API函数编程实现串口通信[6]。系统通过被称为设备控制块DCB 的数据结构对串行口和串口通信驱动程序进行配置串口设备属性的配置由以下 API 函数完成: Setup2Comm() 设置串行通信端口的输入和输出缓冲区的大小;通过设备控制块 DCB 修改和设置串口工作状态的参数。

2.1.2  创建读写线程,实现串行通信

如图3所示,首先打开并配置完串口后开启读、写线程。主线程主要负责将所有串口接收到的数据进行处理显示以及各个子线程的调度和管理,读线程负责读取m个串口的数据,写线程负责向需要控制的串口写入数据。在实际应用中向串口写人数据的操作只是有限的控制指令,所以写线程在创建时即被挂起,当需要向串口发送数据时激活写线程;写操作完成后,即被挂起,以减少系统开销,提高程序的执行效率[7]。

以下是用Windows API函数编写的关键部分的代码。

1)添加全局变量:

HANDLE hCom[m];

DCB dcb[m];

HANDLE m_hThreadWrite;

2)创建读写线程:

//创建读线程

m_hThreadRead=CreateThread(NULL,0,(LPTHREAD_START_

ROUTINE)ThreadRead,NUEL,0,NULL);

//创建写线程

m_hThreadWrite=CreateThread(NULL,0,(LPTHREAD_START_

ROUTINE)

3)在读写线程函数中添加相应的处理信息:

首先在读线程中调用CreateEvent函数创建一个事件,其次调用WaitCommEvent函数等待该窗口事件,当检测到EV_RXCHAR事件发生时,再调用ReadFile函数将数据读入缓冲区内,并进行显示处理。因为写线程创建的时候即被挂起,故要重新调用写线程函数时,必须要先调用ResumeThread函数恢复线程,然后调用WfiteFile函数向串口写入数据。当数据发送成功时,调用SuspendThread函数挂起写线程。数据**软件控制界面如图4所示。

运用在次纳米层面的**实验科学,比如探测电子物质结构。微型化水平层面中的一项关键技术便是同步辐射光,它电磁辐射的一种表现形式。

同步辐射光在许多科研与工业领域已成为理想工具,比如蛋白晶体学、X线断层照相术、照相平版印刷、 X 光技术、残余应力测定,并应用于生命科学、医药、材料学、分子环境科学、石油化学等领域。 反射内存应用于同步加速器应用中,以便在同步加速器储存环中控制粒子抖动。当这些粒子在轨道上的运动由于受到磁场力的作用发生微小改变时,它们便会出现抖动。反射内存应用于控制抖动的系统中,以便确保粒子始终沿轨道运行。由于颗粒高速运动,系统须实时且快速地做出反应。


 
客户服务

公司咨询电话

18612569081
186-12569081
(9:30-17:30)

使用小程序商铺
一键打电话给商家
微信小程序

微信扫一扫